
Structures and Unions

SSASGFGC@Hospet Page 1

Structure

A structure is a user defined data type. We know that arrays can be used to

represent a group of data items that belong to the same type, such as int or float. However

we cannot use an array if we want to represent a collection of data items of different types

using a single name. A structure is a convenient tool for handling a group of logically related

data items.

Structure is a user defined data type used to represent a group of data items of

different types using a single name.

The syntax of structure declaration is

struct structure_name
 {
 type element 1;
 type element 2;
 ……………..
 type element n;
 };
In structure declaration the keyword struct appears first, this followed by structure

name. The member of structure should be enclosed between a pair of braces and it defines

one by one each ending with a semicolon. It can also be array of structure. There is an

enclosing brace at the end of declaration and it end with a semicolon.

We can declare structure variables as follows

 struct structure_name var1,var2,…..,var n;

Example:

To store the names, roll number and total mark of a student you can declare 3

variables. To store this data for more than one student 3 separate arrays may be declared.

Another choice is to make a structure. No memory is allocated when a structure is declared.

It just defines the “form” of the structure. When a variable is made then memory is

allocated. This is equivalent to saying that there's no memory for “int”, but when we declare

an integer that is int var; only then memory is allocated. The structure for the above-

mentioned case will look like

struct student
{

int rollno;
char name[25];
float totalmark;

};

We can now declare structure variables stud1, stud2 as follows

 struct student stud1,stud2;

Structures and Unions

SSASGFGC@Hospet Page 2

Thus, the stud1 and stud2 are structure variables of type student. The above

structure can hold information of 2 students.

It is possible to combine the declaration of structure combination with that of the

structure variables, as shown below.

struct structure_name
 {

type element 1;
type element 2;
……………..
type element n;

 } var1,var2,…,varn;

The following single declaration is equivalent to the two declaration presented in the

previous example.

struct student
 {
 int rollno;
 char name[25];
 float totalmark;
 } stud1, stud2;

Accessing structure Variable

The different variable types stored in a structure are called its members. The

structure member can be accessed by using a dot (.) operator, so the dot operator is known

as structure member operator.

Example:

In the above example stud1 is a structure variable of type student. To access the

member name, we would write stud1.name. Similarly, stud1’s rollno and stud1’s totalmark

can be accessed by writing stud1.rollno and stud1.totalmark respectively.

Initializing Structure Members

Structure members can be initialized at declaration. This much the same manner as

the element of an array; the initial value must appear in the order in which they will be

assigned to their corresponding structure members, enclosed in braces and separated by

commas.

The general form is

struct structure_name var={val1,val2,val3…..};

Example:
#include <stdio.h>

Structures and Unions

SSASGFGC@Hospet Page 3

#include<conio.h>
void main()
 {
 struct student

{
 char *name;
 int rollno;
 float totalmark;
};

struct student stud1={"Venkat",1,98};
struct student stud3= {"Shweta",3,97};
struct student stud2={"Arpita",2,99};
clrscr();
printf(“STUDENTS DETAILS:\n”);
printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud1.rollno, stud1.name,
stud1.totalmark);
printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud2.rollno, stud2.name,
stud2.totalmark);
printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud3.rollno, stud3.name,
stud3.totalmark);
getch();
}

Output
STUDENTS DETAILS:
Roll number: 1
Name: Venkat
Total Marks:98.000000

Roll number: 2
Name: Arpita
Total Marks:99.000000

Roll number: 2
Name:Shweta
 Total Marks:99.000000

Array of structures:

It is possible to store a structure has an array element. i.e., an array in which each

element is a structure. Just as arrays of any basic type of variable are allowed, so are arrays

of a given type of structure. Although a structure contains many different types, the

compiler never gets to know this information because it is hidden away inside a sealed

structure capsule, so it can believe that all the elements in the array have the same type,

even though that type is itself made up of lots of different types.

The declaration statement is given below.

Structures and Unions

SSASGFGC@Hospet Page 4

struct struct_name
 {
 type element 1;
 type element 2;
 ……………..
 type element n;
 }array name[size];

Example:
struct student

 {
 int rollno;
 char name[25];
 float totalmark;
 } stud[100];

In this declaration stud is a 100-element array of structures. Hence, each element of

stud is a separate structure of type student. An array of structure can be assigned initial

values just as any other array. So the above structure can hold information of 100 students.

Program to demonstrate use of array of structure

#include <stdio.h>
#include <conio.h>
void main()
 {
struct student
 {
 int rollno;
 char name[25];
 int totalmark;
 }stud[100];

int n,i;
clrscr();
printf("Enter total number of students\n\n");
scanf("%d",&n);
for(i=0;i<n;i++)
 {

printf("Enter details of %d-th student\n",i+1);
printf("Name:\n");
scanf("%s",&stud[i].name);
printf("Roll number:\n");
scanf("%d",&stud[i].rollno);
printf("Total mark:\n");
scanf("%d",&stud[i].totalmark);

 }

Structures and Unions

SSASGFGC@Hospet Page 5

 printf("STUDENTS DETAILS:\n");
 for(i=0;i<n;i++)
 {
 printf("\nRoll number:%d\n",stud[i].rollno);

 printf("Name:%s\n",stud[i].name);
printf("Total mark:%d\n",stud[i].totalmark);

 }
getch();
}

OUTPUT

Enter total number of students:
3

Enter details of 1-th student
Name:SUBAHAS
Roll number:11
Total mark:589

Enter details of 2-th student
Name:RUKSANA
Roll number:12
Total mark:594
Enter details of 3-th student
Name:SANA
Roll number:13
Total mark:595

STUDENTS DETAILS:
Roll number:11
Name: SUBAHAS
Total mark:589

Roll number:12
Name: RUKSANA
Total mark:594

Roll number:13
Name: SANA
Total mark:595

Structure as structure member (Embedded structure):

A structure inside another structure is called an embedded structure. A structure

can have one or more of its member as another structure, but a structure cannot be

member to itself when a structure is used as structure member. In such situation, the

Structures and Unions

SSASGFGC@Hospet Page 6

declaration of the embedded structure must appear before the declaration of the outer

structure. For example

#include <stdio.h>

#include <conio.h>

void main()

{

struct dob

 {

int day;

int month;

int year;

};

struct student

 {

struct dob d;

 int rollno;

char name[25];

int totalmark;

 }stud[25];

int n,i;

clrscr();

printf("Enter total number of students");

scanf("%d",&n);

for(i=0;i<n;i++)

 {

printf("\n\nEnter details of %d student",i+1);

printf("\nName:");

scanf("%s",&stud[i].name);

printf("\nRoll number:");

scanf("%d",&stud[i].rollno);

printf("\nTotal mark:");

scanf("%d",&stud[i].totalmark);

printf("\nDate of birth (Format:01 06 2010):");

scanf("%d%d%d",&stud[i].d.day,&stud[i].d.month,&stud[i].d.year);

}

printf("\nSTUDENTS DETAILS:\n");

for(i=0;i<n;i++)

{

Structures and Unions

SSASGFGC@Hospet Page 7

printf("\nRoll number:%d\n",stud[i].rollno);

printf("Name:%s\n",stud[i].name);

printf("Total mark:%d\n",stud[i].totalmark);

printf("Date of birth : %d / %d / %d \n\n",

stud[i].d.day,stud[i].d.month,stud[i].d.year);

}

getch();

}

OUTPUT

Enter total number of students 2

Enter details of 1 student

Name: karthik

Roll number:12

Total mark:588

Date of birth (Format:01 06 2010):11 12 1997

Enter details of 2 student

Name: sarita

Roll number:18

Total mark:598

Date of birth (Format:01 06 2010):1 2 1997

STUDENTS DETAILS:

Roll number:12

Name: karthik

Total mark: 588

Date of birth : 11 / 12 / 1997

Roll number:18

Name: sarita

Total mark:598

Date of birth : 1 / 2 / 1997

Union

Union is a user created data type similar to structure but in this case all the members

share a common memory location. The size of the union corresponds to the length of the

largest member. Since the member share a common location they have the same starting

address.

Structures and Unions

SSASGFGC@Hospet Page 8

The real purpose of unions is to prevent memory fragmentation by arranging for a

standard size for data in the memory. By having a standard data size we can guarantee that

any hole left when dynamically allocated memory is freed will always be reusable by

another instance of the same type of union. This is a natural strategy in system

programming where many instances of different kinds of variables with a related purpose

and stored dynamically.

A union is declared in the same way as a structure. The syntax of union declaration is
union union_name
 {

 type element 1;
 type element 2;
 ……………..
 type element n;
};

 This declares a type template. Variables are then declared as:

union union_name x,y,z;

For example, the following code declares a union data type called Student and a

union variable called stud:

union student

 {

int rollno;

float totalmark;

};

union student stud;

It is possible to combine the declaration of union combination with that of the union

variables, as shown below.

union union_name

{

type element 1;

type element 2;

……………..

type element n;

}var1,var2,…,varn;

The following single declaration is equivalent to the two declaration presented in the

previous example.

union student

{

int rollno;

float totalmark;

Structures and Unions

SSASGFGC@Hospet Page 9

}x,y,z;

Exercise: Compare structure and Union

The difference between structure and union is,

Structure Union

The amount of memory required to store a

structure variable is the sum of the size of all the

members.

The amount of memory required is always equal

to that required by its largest member.

Each member have their own memory space. One block is used by all the member of the

union.

Keyword struct defines a structure Keyword union defines a union.

struct s_tag

{

 int ival;

 float fval;

 char *cptr;

}s;

union u_tag

{

 int ival;

 float fval;

 char *cptr;

}u;

Within a structure all members gets memory

allocated; therefore any member can be

retrieved at any time.

While retrieving data from a union the type

that is being retrieved must be the type most

recently stored. It is the programmer's

responsibility to keep track of which type is

currently stored in a union; the results are

implementation-dependent if something is

stored as one type and extracted as another.

One or more members of a structure can be

initialized at once.

A union may only be initialized with a value

of the type of its first member; thus union u

described above (during example

declaration) can only be initialized with an

integer value.

Structure:

#include<stdio.h>

#include<conio.h>

void main()

{

struct testing

{

Structures and Unions

SSASGFGC@Hospet Page 10

int a;

char b;

float c;

}var;

clrscr();

printf(“\nsizeof(var) is %d”,sizeof(var));

printf(“\nsizeof(var.a) is %d”,sizeof(var.a));

printf(“\nsizeof(var.b) is %d”,sizeof(var.b));

printf(“\nsizeof(var.c) is %d”,sizeof(var.c));

var.a=10;

printf(“\nvalue of var.a is %d”,var.a);

var.b=’b’;

printf(“\nvalue of var.b is %c”,var.b);

var.c=15.55;

printf(“\nvalue of var.c is %f”,var.c);

printf(“\nvalue of var.a is %d”,var.a);

printf(“\nvalue of var.b is %c”,var.b);

printf(“\nvalue of var.c is %f”,var.c);

getch();

}

OUTPUT

sizeof(var) is 7

sizeof(var.a) is 2

sizeof(var.b) is 1

sizeof(var.c) is 4

value of var.a is 10

value of var.b is b

value of var.c is 15.550000

value of var.a is 10

value of var.b is b

value of var.c is 15.550000

Union:

#include<stdio.h>

#include<conio.h>

void main()

{

union testing

{

Structures and Unions

SSASGFGC@Hospet Page 11

int a;

char b;

float c;

}var;

clrscr();

printf(“\nsizeof(var) is %d”,sizeof(var));

printf(“\nsizeof(var.a) is %d”,sizeof(var.a));

printf(“\nsizeof(var.b) is %d”,sizeof(var.b));

printf(“\nsizeof(var.c) is %d”,sizeof(var.c));

var.a=10;

printf(“\nvalue of var.a is %d”,var.a);

var.b=’b’;

printf(“\nvalue of var.b is %c”,var.b);

var.c=15.55;

printf(“\nvalue of var.a is %f”,var.c);

printf(“\nvalue of var.a is %d”,var.a);

printf(“\nvalue of var.b is %c”,var.b);

printf(“\nvalue of var.c is %f”,var.c);

getch();

}

OUTPUT

sizeof(var) is 4

sizeof(var.a) is 2

sizeof(var.b) is 1

sizeof(var.c) is 4

value of var.a is 10

value of var.b is b

value of var.c is 15.550000

value of var.a is -13458

value of var.b is

value of var.c is 15.550000

